Introduction:

Today a lot of applications are using digital data transfers, but as these number rapidly increase, the bandwidth available for these exchanges remains almost constant. Thus the need in bandwidth for fast data transfers is becoming a really crucial point. One of the solutions to exploit at the maximum rate these transmission channels is to use data compression on both ends of the communication channels. This is the reason why I have studied in my project an implementation of the Lempel Ziv lossless data compression algorithm (version 77).

I. Lempel Ziv(77) Algorithm:

The Lempel-Ziv algorithm is a loss-less data compression algorithm based on the redundancy of word groups. It's a dictionary based method, which has the particularity to not transmit the encoding dictionary to the receiver, as this can be recovered from the compressed string. To achieve this, we use a kind of virtual sliding window, which slide over the text as we are compressing the data.

1/ Description:

Let's consider a buffer containing M input symbols called look ahead Buffer, and a N symbols dictionary. And lets call Buffer the union of the N symbols dictionary and the M look ahead symbols buffer.

� INCORPORER Word.Picture.6 ���

At each steps, we look for a maximum length matching word of the dictionary that perfectly match the first word of the look ahead buffer (starting at y0). if the length of such a string is smaller than 2 we output a Code symbol that look like : 1;Y0 , where Y0 is the ascii code of the symbol y0 . On the contrary if the length of such a word is greater than 2 we output a Code symbol that look like: 0;Cl;Cp where Cl is the matching length coded on log2(M) bits, and Cp the starting position in the dictionary of the maximum matching length string coded on log2(N) bits. Then we shift all the buffer to the left by Cl positions, and we input by the right Cl new symbols yi. A new step can then begin. For more details please refer to W. Burlesson IEEE Article (annexe 1). The decompression algorithm is quite similar to the compression one, except that there is no need to look for a matching string, thus the decompression process is faster than the compression.

2/ Implementation in C:

I have implemented the previous algorithm in two C programs. One implementation (lz77demo.c) has been made only for demo purposes, where as lz77.c is both a data compressor and decompressor can be used as simply as others data compressors. In the following lines, I will shortly describe the data structures and the main procedures used in lz77.c.

/* internal structure that describe a match between two words */

struct Match {

 int Length; /* the matching length */

 int Pointer; /* the matching position */

 };

/* dictionary default size */

int N = 512;

/* dictionary default size in bits */

int NB = 9;

/* look ahead buffer size */

int M = 32;

/* look ahead buffer size in bits */

int MB = 5;

/* Global Buffer and Base of the Allocated memory */

unsigned char *Buffer, *Base;

/* Number of words in the look ahead Buffer, used to handle the end of file */

int NW = 0;

/* The ascii Probabilities Board */

unsigned long Proba[256];

/***

 My Bit File library : This library is used to write and/or read bit by bit in a File

 ***/

#define Cache_Size 20000

#define Error -1

#define Ok 1

/* a BFILE is a technical data structure used to implement a file that con be read or write bit by bit */

struct BFILE {

 FILE *f; /* The physical file C handle */

 unsigned char Cache[Cache_Size]; /* The Cache used to access the File */

 unsigned char CByte; /* The Current Word being written */

 int CBPos; /* Current Position in the Current Word */

 unsigned int CPos; /* Current Position in the Cache */

 unsigned int CEnd; /* Cache End if not full */

 char Mode; /*indicates the file access mode R = Read, W = Write */

 char eof; /* not zero if end of file */

 };

/**** Opens a Bit File ****/

struct BFILE *BF_Open (const char *Name, const char Mode) ;

/**** Writes nbits bits in the BFILE *f ****/

int BF_Write (unsigned long bits, int nbits, struct BFILE *f) ;

/**** Reads nbits bits in the BFILE *f ****/

unsigned long BF_Read (int nbits, struct BFILE *f) ;

/**** Close a BFILE *f ****/

int BF_Close (struct BFILE *f) ;

/***

 End of my Bit File library ***/

/* The Input File */

struct BFILE *Input;

unsigned long I_Length = 0;

/* The Output File */

struct BFILE *Output;

unsigned long O_Length = 0;

/** Initializes the Global Buffer **/

void InitB(void) ;

/** Closes the Global Buffer **/

void CloseB(void) ;

/** Shifts the Global Buffer to the left and feeds it by the right in the compression process **/

void C_Shift(int n) ;

/** Outputs the look ahead buffer symbols to the output file and shifts the Buffer to the left **/

/** in the decompression process **/

void D_Shift(int n) ;

/** Searches for the longest matching string **/

struct Match Search(void) ;

/** Compresses the Input File to an Output File */

void Compress(void)

{ struct Match match;

NW = 0;

C_Shift(M);

while (NW > 0) {

 match = Search();

 if (match.Length < 2) { /*if length>2 we output the (1 ;ascii code) */

 BF_Write(1, 1, Output);

 BF_Write((unsigned long)Buffer[N], 8, Output);

 O_Length += (8 + 1);

 NW--;

 C_Shift (1);

 }

 else { /* else we output a coded symbol (0 ;length - 1 ;pointer) */

 BF_Write(0, 1, Output);

 BF_Write((unsigned long)(match.Length - 1), MB, Output);

 BF_Write((unsigned long)match.Pointer, NB, Output);

 O_Length += (MB + NB + 1);

 NW -= match.Length;

 C_Shift (match.Length);

 }

 }

I_Length = I_Length/8;

O_Length = O_Length/8;

}

/** Decompresses the Input File to an Output File */

void Decompress(void)

{ unsigned char Src = 0; /* Source indicator */

 int Pointer = 0;

 int Length = 0;

 int i = 0;

NW = 0;

while (!Input->eof) {

 Src = (unsigned char)BF_Read(1, Input);

 if (Src == 1) { /* we read an immediate ascii code (1 ;ascii code) */

 Buffer[N] = (unsigned char)BF_Read(8, Input);

 I_Length += (8 + 1);

 NW++;

 D_Shift (1);

 }

 else { /* else we read a coded word (0 ;length-1 ;pointer) */

 Length = (int)BF_Read(MB, Input) + 1;

 Pointer = (int)BF_Read(NB, Input);

 for (i=0; i<Length; i++)

 Buffer[N+i] = Buffer[Pointer+i];

 I_Length += (MB + NB + 1);

 NW += Length;

 D_Shift (Length);

 }

 }

I_Length = I_Length/8;

O_Length = O_Length/8;

}

3/ Usage of lz77demo and lz77 :

Usage of lz77demo : This demo program is really simple to use, here is the syntax of the command line :

 LZ77 Demo by Rachad ALAO (ENST / Telecom Paris). usage :

 lz77 <Input file name> <Output file Name>

 where Input file name is the name of the file containing ascii codes separated by spaces.

 Ex : in.txt

 24 35 124 3 78 95 14 36

 The output file name is the name of the output file that will receive the report of the demo program. A report file look like this :

--> compressing in.txt, please wait...

Cycle 0 : 1 00010010

Cycle 1 : 0 00010 111111111

Cycle 2 : 0 00111 111111100

Cycle 3 : 0 00010 000000000

--> file compressed successfuly!

--> Compression Ratio : 56 / 100

Usage of lz77 : lz77 has a more sophisticated command line but is also quite simple to use. Here is the syntax of the command line :

 LZ77 v.1.0 by Rachad ALAO (ENST / Telecom Paris). usage :

 lz77 -? -c -help -d -r -b size <Input> <optionnal Output>

 <Input> : Input file name

 <Output> : Optionnal Output file name

 -? : displays this help message

 -c : indicates lz77 to perform compress command (default)

 -help : displays this help message

 -d : indicates lz77 to perform decompress command

 -r : indicates lz77 to generate a report file

 -b size : indicates lz77 the size of the buffer to use in bits

 default size is 9 => 512 bytes buffer size

 Note that the output filename is optional since lz77 will manage to create an output file corresponding to the input file it has to handle and to the command it has to perform.

Ex :

�PAGE�6�

